金网-财经股票门户网站 文稿合作 QQ:1771378614 电话:18046439594
金网
>
济宁
>
综合

数据挖掘的应用有哪些?

来源:中华网

随着互联网的普及,大数据时代也已经到来了。今天,小编要给大家介绍的就是在大数据时代下,数据挖掘在各个领域的应用。接下来,一起了解一下吧。

大数据时代下

信用卡的违约预测

如今,随着科技的高速发展,信息量急剧增加,内容变得越来越丰富,信用卡在人们的生活中具有不可忽视的地位。众所周知,信用卡是由银行发放,银行需要对申请人的个人信息进行核实,确认无误后再进行发放信用卡,Chen等针对商业银行贷款行为提出了一种关于信用率的模糊算法。信用卡在办理之前,银行首先需要对申请人进行细致调查,根据申请人的实际情况判断是否有能力来偿还所贷金额,刘铭等在传统的神经网络基础上,采用灰狼优化算法计算神经网络的初始权值和阈值,并提出了一种改进的模糊神经网络的算法,通过建立的信用卡客户的违约预测模型,与目前其他的预测方法进行比较,得到较好的预测结果,进一步,验证了模糊神经网络在信用卡客户的预测上具有较好的鲁棒性、准确性和高效性。采用有效的数据挖掘技术,针对信用卡客户属性和消费行为的海量数据进行分析,可以更好的维护优质客户,消除违约客户的风险行为,为信用卡等金融业务价值的提升提供了技术上的保障。

恶意软件的智能检测

在大数据时代下,在恶意软件检测中数据挖掘技术得到广泛的应用。恶意软件严重损害到网络和计算机,恶意软件的检查依赖于签名数据库(signature atabase,SD),通过SD,对文件进行比较和检查,如果字节数相等,则可疑文件将被识别为恶意文件。有些基于有标签的恶意软件检测的主题,集中在一个模糊的环境下,进而,无法进行恶意软件行为的动态修改,无法识别隐藏的恶意软件。相反地,基于行为的恶意软件检测就可以找到恶意文件的真实行为。而如果采用基于数据挖掘技术的分类方法,就可以根据每个恶意软件的特征和行为进行检测,从而检测到恶意软件的存在。

生物信息学中的广泛应用

生物信息学是一门交叉学科,融合了生命科学、计算机科学、信息科学和数学等众多学科。随着科技的快速发展、技术的提升及结果的优化,将高科技信息技术拓展到生物研究领域。但是,单纯凭借原有的计算机技术是远远不够的,需要以计算机科学做辅助,将生命科学、信息科学和数学等交叉学科融合在一起,通过数据挖掘技术进行处理,仔细分析生物数据之间的内在联系,挖掘生物数据内部的潜在信息。生物信息数据的特点有很多,孙勤红总结了当前生物信息数据的特点,包括数量大、种类多、维度高、形式广及序列性等。当前生物信息学的热点包括:从以序列分析为代表的组成分析向功能分析的转变;从单个生物分析的研究到基因调控的转变;对基因组数据进行整体分析等。人类目前在生物基因组计划中的研究,仅仅是冰山的一角,未来在差异基因表达、癌症基因检测、蛋白质和RNA基因的编码等生物基因方面的研究工作都与数据挖掘技术密不可分,只有更好地利用数据挖掘技术,才可以挖掘出生物基因组中的非凡价值。

大数据时代下数据挖掘的应用就说到这里,如果你还有想补充的应用,欢迎在下方留言分享。

图片新闻

返回顶部